44,045 research outputs found

    On the Asymptotic Capacity of XX-Secure TT-Private Information Retrieval with Graph Based Replicated Storage

    Full text link
    The problem of private information retrieval with graph-based replicated storage was recently introduced by Raviv, Tamo and Yaakobi. Its capacity remains open in almost all cases. In this work the asymptotic (large number of messages) capacity of this problem is studied along with its generalizations to include arbitrary TT-privacy and XX-security constraints, where the privacy of the user must be protected against any set of up to TT colluding servers and the security of the stored data must be protected against any set of up to XX colluding servers. A general achievable scheme for arbitrary storage patterns is presented that achieves the rate (ρminXT)/N(\rho_{\min}-X-T)/N, where NN is the total number of servers, and each message is replicated at least ρmin\rho_{\min} times. Notably, the scheme makes use of a special structure inspired by dual Generalized Reed Solomon (GRS) codes. A general converse is also presented. The two bounds are shown to match for many settings, including symmetric storage patterns. Finally, the asymptotic capacity is fully characterized for the case without security constraints (X=0)(X=0) for arbitrary storage patterns provided that each message is replicated no more than T+2T+2 times. As an example of this result, consider PIR with arbitrary graph based storage (T=1,X=0T=1, X=0) where every message is replicated at exactly 33 servers. For this 33-replicated storage setting, the asymptotic capacity is equal to 2/ν2(G)2/\nu_2(G) where ν2(G)\nu_2(G) is the maximum size of a 22-matching in a storage graph G[V,E]G[V,E]. In this undirected graph, the vertices VV correspond to the set of servers, and there is an edge uvEuv\in E between vertices u,vu,v only if a subset of messages is replicated at both servers uu and vv

    Measurement of the rapidity-even dipolar flow in Pb-Pb collisions with the ATLAS detector

    Full text link
    The rapidity-even dipolar flow v1 associated with dipole asymmetry in the initial geometry is measured over a broad range in transverse momentum 0.5 GeV<pT<9 GeV, and centrality (0-50)% in Pb-Pb collisions at sqrt(s_NN)=2.76 TeV, recorded by the ATLAS experiment at the LHC. The v1 coefficient is determined via a two-component fit of the first order Fourier coefficient, v_{1,1}= cos \Delta\phi, of two-particle correlations in azimuthal angle \Delta\phi=\phi_a-\phi_b as a function of pT^a and pT^b. This fit is motivated by the finding that the pT dependence of v_{1,1}(pT^a,pT^b) data are consistent with the combined contributions from a rapidity-even v1 and global momentum conservation. The magnitude of the extracted momentum conservation component suggests that the system conserving momentum involves only a subset of the event (spanning about 3 units in \eta in central collisions). The extracted v1 is observed to cross zero at pT~1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v3, and decreases at higher pT. Interestingly, the magnitude of v1 at high pT exceeds the value of the v3 in all centrality interval and exceeds the value of v2 in central collisions. This behavior suggests that the path-length dependence of energy loss and initial dipole asymmetry from fluctuations corroborate to produce a large dipolar anisotropy for high pT hadrons, making the v1 a valuable probe for studying the jet quenching phenomena.Comment: 9 pages, 6 figures. Proceedings for the 28th Winter Workshop on Nuclear Dynamics, Dorado Del Mar, Puerto Rico, United States Of America, 7 - 14 Apr 201

    A study of the correlations between jet quenching observables at RHIC

    Full text link
    Focusing on four types of correlation plots, RAAR_{\rm AA} vs. v2v_2, RAAR_{\rm AA} vs. IAAI_{\rm AA}, IAAI_{\rm AA} vs. v2IAAv_2^{I_{\rm AA}} and v2v_2 vs.\ v2IAAv_2^{I_{\rm AA}}, we demonstrate how the centrality dependence of \emph{correlations} between multiple jet quenching observables provide valuable insight into the energy loss mechanism in a quark-gluon plasma. In particular we find that a qualitative energy loss model gives a good description of RAAR_{\rm AA} vs.\ v2v_2 only when we take ΔEl3\Delta E\sim l^3 and a medium geometry generated by a model of the Color Glass Condensate. This same ΔEl3\Delta E\sim l^3 model also qualitatively describes the trigger pTp_T dependence of RAAR_{\rm AA} vs.\ IAAI_{\rm AA} data and makes novel predictions for the centrality dependence for this RAAR_{\rm AA} vs.\ IAAI_{\rm AA} correlation. Current data suggests, albeit with extremely large uncertainty, that v2IAAv2v_2^{I_{\rm AA}}\gg v_2, a correlation that is difficult to reproduce in current energy loss models.Comment: 6 pages, 6 figure

    Mapping of the \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e Oxa1-Mitochondrial Ribosome Interface and Identification of MrpL40, a Ribosomal Protein in Close Proximity to Oxa1 and Critical for Oxidative Phosphorylation Complex Assembly

    Get PDF
    The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40\u27s ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes

    Mapping of the saccharomyces cerevisiae oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to oxal and critical for oxidative phosphorylation complex assembly

    Get PDF
    The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes

    Oxa1 Directly Interacts with Atp9 and Mediates Its Assembly into the Mitochondrial F\u3csub\u3e1\u3c/sub\u3eF\u3csub\u3eo\u3c/sub\u3e-ATP Synthase Complex

    Get PDF
    The yeast Oxa1 protein is involved in the biogenesis of the mitochondrial oxidative phosphorylation (OXPHOS) machinery. The involvement of Oxa1 in the assembly of the cytochrome oxidase (COX) complex, where it facilitates the cotranslational membrane insertion of mitochondrially encoded COX subunits, is well documented. In this study we have addressed the role of Oxa1, and its sequence-related protein Cox18/Oxa2, in the biogenesis of the F1Fo-ATP synthase complex. We demonstrate that Oxa1, but not Cox18/Oxa2, directly supports the assembly of the membrane embedded Fo-sector of the ATP synthase. Oxa1 was found to physically interact with newly synthesized mitochondrially encoded Atp9 protein in a posttranslational manner and in a manner that is not dependent on the C-terminal, matrix-localized region of Oxa1. The stable manner of the Atp9-Oxa1 interaction is in contrast to the cotranslational and transient interaction previously observed for the mitochondrially encoded COX subunits with Oxa1. In the absence of Oxa1, Atp9 was observed to assemble into an oligomeric complex containing F1-subunits, but its further assembly with subunit 6 (Atp6) of the Fo-sector was perturbed. We propose that by directly interacting with newly synthesized Atp9 in a posttranslational manner, Oxa1 is required to maintain the assembly competence of the Atp9-F1-subcomplex for its association with Atp6

    Transport through the intertube link between two parallel carbon nanotubes

    Full text link
    Quantum transport through the junction between two metallic carbon nanotubes connected by intertube links has been studied within the TB method and Landauer formula. It is found that the conductance oscillates with both of the coupling strength and length. The corresponding local density of states (LDOS) is clearly shown and can be used to explain the reason why there are such kinds of oscillations of the conductances, which should be noted in the design of nanotube-based devices.Comment: 6 pages, 4 figure
    corecore